A new generation of zirconia supported metal oxide catalysts for converting low grade renewable feedstocks to biodiesel.

نویسندگان

  • Manhoe Kim
  • Craig DiMaggio
  • Steven O Salley
  • K Y Simon Ng
چکیده

A new class of zirconia supported mixed metal oxides (ZnO-TiO(2)-Nd(2)O(3)/ZrO(2) and ZnO-SiO(2)-Yb(2)O(3)/ZrO(2)) has demonstrated the ability to convert low quality, high free fatty acid (FFA) bio-oils into biodiesel. Pelletized catalysts of ZrO(2) supported metal oxides were prepared via a sol-gel process and tested in continuous flow packed bed reactors for up to 6 months. In a single pass, while operating at mild to moderate reaction conditions, 195 °C and 300 psi, these catalysts can perform simultaneous esterification and transesterification reactions on feedstock of 33% FFA and 67% soybean oil to achieve FAME yields higher than 90%. Catalytic activity of the ZrO(2) supported metal oxide catalysts was highly dependent on the metal oxide composition. These heterogeneous catalysts will enable biodiesel manufacturers to avoid problems inherent in homogeneous processes, such as separation and washing, corrosive conditions, and excessive methanol usage.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preparation of Supported Nanosized Sulfated Zirconia by Strontia and Assessment of Its Activities in the Esterification of Oleic Acid

In recent years, governmental health agencies are highly concerned about the toxic emissions from diesel engines. Among fuel alternatives, biodiesel has the highest potential. Biodiesel has similar properties as diesel and could be directly utilized for diesel engines. The main advantages of biodiesel are that it could be used without modification, it is renewable, non-toxic, environment-friend...

متن کامل

Alkaline Earth Metal Oxide Catalysts for Biodiesel Production from Palm Oil: Elucidation of Process Behaviors and Modeling Using Response Surface Methodology

Four different alkaline earth metal oxides i.e. MgO, CaO, SrO and BaO were used as heterogeneous catalysts for biodiesel production from palm oil. Effects of critical process variables i.e. reaction time, methanol to oil ratio and temperature were investigated. The results were then fitted to a historical design to study the Analysis of Variance (ANOVA), to characterize interactions between...

متن کامل

Biodiesel production using solid metal oxide catalysts

Biodiesel production is worthy of continued study and optimization of production procedures due to its environmentally beneficial attributes and its renewable nature. Heterogeneous transesterification is considered to be a green process. The process requires neither catalyst recovery nor aqueous treatment steps and very high yields of methyl esters can be obtained, close to the theoretical valu...

متن کامل

CVD growth of carbon nanostructures from zirconia: mechanisms and a method for enhancing yield.

By excluding metals from synthesis, growth of carbon nanostructures via unreduced oxide nanoparticle catalysts offers wide technological potential. We report new observations of the mechanisms underlying chemical vapor deposition (CVD) growth of fibrous carbon nanostructures from zirconia nanoparticles. Transmission electron microscope (TEM) observation reveals distinct differences in morpholog...

متن کامل

Biodiesel: A Cost-effective Fuel Using Waste Materials

The main disadvantage of biodiesel is its high price. The price of biodiesel depends on various factors such as the price of oil, methanol, catalyst, and labor. Among dif-ferent economic factors, oil accounts for the largest share of input costs of biodiesel production. In this study, first, suitable heterogeneous catalysts were identified for biodiesel production. Several studies were carried ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Bioresource technology

دوره 118  شماره 

صفحات  -

تاریخ انتشار 2012